
Linear Optimisation Example

FILE: Linear.cln

Introduction
A common problem of resource optimisation uses a technique called Linear Programming 
(LP). These days LP problems are solved by spreadsheets as a side function to the main 
solver utility. CleanSheet is no different in this, its Solution Search object can detect and 
solve LP problems.
When you open this file, the sheet is designed on 3 layers to help the explanation. Select 
Scale to Fit on the Scale dialogue, the whole sheet will be visible.
This example is explained in much more detail than the others. As well as explaining how 
the sheet works, it explains the steps that went into its design.

Scenario
A manufacturer of fertilizer develops 3 new products, code names X1, X2 and X3. These 3 
fertilizers are made from different mixtures of 4 basic ingredients: Nitrates, Phosphates, 
Potash and Fillers.
The    tons used of each ingredient for each product is listed in the following table. It should 
be clear that this table makes 100 tons of each ingredient since 10+10+20+60 is 100.

The ingredients cost different amounts to buy: Nitrates £150 per ton, Phosphates £60 per 
ton, Potash £120 per ton and Filler £10 per ton.
A limit on mining and shipping means that we can obtain a maximum supply of each 
ingredient as follows: 1200 tons per month of Nitrates, 2000 tons per month Phosphates, 
2200 tons per month Potash, and a virtually unlimited supply of Fillers.
The prices we charge for our three fertilizers are X1 £83, X2 £81 and X3 £81.
The cost of manufacturing the ingredients into finished products is £11 per ton.

Given that we can sell whatever we make, what quantity of X1, X2 and X3 should we make 
in the next month to make the maximum profit?

Layer 0 - Known Inputs
The first step in any sheet is to place objects containing the information we know. For this 
we have laid out 4 tables and 1 Input box into which the known data is entered.



Layer 1 - The Contribution to Profits
The next step for an LP problem is to calculate the profit we would make if we sold a 
particular number of units. How many units? This is determined by the Solution Search 
object, which we haven't put into the sheet yet. During the development of this sheet an 
Input Table was placed where the purple square is on the diagram. This was a column 
containing 3 entries which we used to check this section of the sheet. This trick may help 
you in developing your own sheets.
The basic contribution to profit, is the total value of sales minus the cost of the ingredients 
and minus the manufacturing cost.



Click on each object you need help with.

Layer 2 - the Amount of Ingredients Used
Suppose we make ten tons each of X1,X2 and X3. Then we have used up Nitrates, 
Phosphates, Potash and Filler - but how much?
We need to know how much of each ingredient we have used in order that we don't try to 
use more per month than we can obtain. Layer 2 of this sheet calculates a row array 
showing how much of each ingredient we have used.

Click on each object you need help with.

Finishing Off
We have all the essential ingredients for the LP problem, now we must add the Solution 
Search object to solve this sheet. For this example we will put Solution Search on Layer 0, 
since this is the layer we work with most when we use the sheet.



We set the number of constraint inputs to 3
We set the number of output to 1, although we are changing 3 values, we are 

actually changing 1 array containing 3 values, so we only need one output.

Constraints
Constraint Input A We feed in the output from the Solution Search object. It is important 

that all the output values be positive, since we cannot manufacture 
negative quantities of X1, X2 or X3.

Constraint Input B We feed in the amount of Ingredients used we calculated on Layer 2.
Constraint Input C We feed in the shipping limit, the limit of each ingredient that we can 

obtain in a month.
A >= 0 The amount we manufacture must be positive. For example 

{{10,10,10}} >=0 is TRUE because all of the elements are greater 
than zero.

B <= C B, the ingredients used, must be less than C, the maximum 
ingredients we can get hold of. B and C are both arrays of the same 
type, so this is TRUE only if all the elements of B are less than or 
equal to their corresponding element in C.

Outputs to Vary
{{0,0,0}} This is the only output, it is a column array which contains the 

amounts of each product we are to manufacture. Its start value is 
{{0,0,0}} notice the two sets of curly brackets indicating a column 
array.

Solution to Find
Our aim is to maximise the contribution to profit that we calculated on layer 1. To do this 
we connect this result to the optimum inlet on the Solution Search object.

Solve the Sheet
To solve the sheet, switch to Use Mode and click on the Solution Search object. 

Conclusion
The Solution Search object finds a solution {{4000,8000,0}} which means that we should 
manufacture 4000 tons of X1, 8000 tons of X2 and no X3 to make a maximum profit of 
£284000.

Over Engineered
You may think there is a lot to this sheet and you would be right. This sheet is heavily over-
engineered and for good reason:

If there were more than 4 ingredients, you would simply widen the table and put in 
the extra values, the sheet will adjust.

If there were more than 3 fertilizers being made, simply extend the tables and put 
the details in for the extra fertilizers.



If the manufacturing costs vary for each fertilizer, change the Object Input Box for an 
Input Table with a column of manufacturing costs.

For this example, the ingredients add up to the same for each fertilizer, this sheet 
does not make use of this assumption in the calculation.
It should be clear that this sheet can be the basis of a lot of LP problems. Simply modify the
tables on Layer 0 and modify the Solution Search object's setting, the rest of the sheet will 
adjust automatically.



This is an Input Table into which we have placed the ratios of 
ingredients used. Notice that the Column and Row headings we have
used on are not part of the data, the input table has been set to 
remove these.



This is an Input Table, into which we have placed the Price per Ton for
each of the 4 ingredients. Notice that we've laid the ingredients out 
in columns. Keeping the products X1, X2 and X3 as the rows and the 
ingredients as the columns makes the sheet easier to follow.



This is an Input Table into which the Shipping limits have been 
placed. The Filler is available in almost limitless quantities, hence its 
limit is well above the others.



This is an Input Table containing the Retail Price that we sell the 
fertilizers at. We have entered this as a column, to be consistent with
the columns in the Ingredients table.



This is an Object Input Box, which is used to enter single values 
rather than arrays. Here it contains the cost of manufacturing per 
ton.



This is a Junction object, because we have used several layers for 
this sheet, this Junction makes it easier to take two pipes across the 
layers.



This is a General Toolbox Object. It is adding along the rows of 
ingredients to calculate how much of each of fertilizers X1, X2 and 
X3 we are making for each batch.

Since we are making 10+10+20+60 =100 tons of X1 and 100 tons 
of X2 and X3, the result from this object is {100,100,100}.



This is a Sum Product object. This is used to calculate the price of the
ingredients for each of our fertilizers X1, X2 and X3. This is going to 
be our price per hundred tons, we will scale it later to be price per 
ton.

Input A is the table of how much ingredients are used for each fertilizer, Input B is the price 
of each ingredient.
This gives us a price of £5100 for X1, £4500 for X2 and £5499 for X3.



This is a Calculator Object, we are using it on this sheet to calculate 
the contribution made by each of our three fertilizers X1, X2 and X3. 
Notice that we are not using a Cog Object, Reporter/Announcer or 
any other complex object - it simply isn't necessary.
The equation to do the calculation is: c- b/{a}-d 

{a} Is the quantity of each fertilizer we are making per batch, the result from the 
General Toolbox object was a 1 dimensional array {100,100,100}, we need it as a
two dimensional column array {{100,100,100}}, hence we have enclosed it in 
curly brackets.

b Is the cost of making one batch of fertilizer
b/{a} Is the cost per ton to manufacture each fertilizer. Notice that when you divide two

arrays of the same type, it divides corresponding elements.
c Is the table of retail prices
d Is the manufacturing cost

The finished calculation looks like this:
{{83,81,81}} - {{5100,4500,5400}} / {{100,100,100}} - 11
CleanSheet performs most of the operations on corresponding 
elements
{{83-5100/100-11 , 81-4500/100-11 , 81-5400/100-11}}
Notice that subtracting 11 from an array is equivalent to subtracting 
11 from each of the array's elements.
The end result is {{21,25,16}} which is the contribution to profit 
that one ton of each of X1, X2 and X3 makes.



This is an Output Table object, used here to check the profit 
contribution made by each product.



This is a Sum Product Object, it is used here to multiply the 
contribution array by the number of tons produced to obtain a total 
profit.

Input B is the amount (in tons) of each of X1, X2 and X3 we are making, as this comes from 
the Solution Search object, we have substituted an Input Table and used the test values 
1,1,1.
If we make one ton of each, then the profit is £62.
Notice that the Sum Product object returns a 1 dimensional array, so the result is actually 
{62}.



To test this section of the sheet we have to have some trial results. 
For this we use an Input Table placed at this point in the sheet. In the
finished sheet, this table will come from the Solution Search object.
For our test we used a column containing {{1,1,1}} i.e., one ton of 
each product is manufactured.



This is a Junction Object, used to make connections easier.



This is a General Toolbox Object. It is adding along the rows of 
ingredients to calculate how much of each of fertilizers X1, X2 and 
X3 we are making for each batch.

Since we are making 10+10+20+60 =100 tons of X1 and 100 tons 
of X2 and X3, the result from this object is {100,100,100}.



This is a Calculator Object, it contains the equation: 
transpose(transpose(b)/a).

a This is the quantity we make in a batch {100,100,100}, returned by 
the General Toolbox object as a 1 dimensional (row) array.

transpose(b) This is the mixture of ingredients transposed to match the row array 
a, in this example {{10,10,20,60}, {10,20,10,60}, {20,10,10,60}}. If 
you examine just the first sub array {10,10,20,60} you will see that 
this is the ingredients used to make X1.

transpose(b)/a This breaks down as follows {{10,10,20,60}/100 , {10,20,10,60}/100,
{20,10,10,60}/100} which becomes {{0.1,0.1,0.2,0.6}, 
{0.1,0.2,0.1,0.6}, {0.1,0.2,0.1,0.6}} in other words 1 ton of X1 
contains 0.1 tons of Nitrates, 0.1 tons of Phosphates, 0.2 tons of 
Potash and 0.6 tons of filler.

The final transpose produces an array which is the same as the Ingredients array, but 
scaled so that the ingredients make one ton of each of X1, X2, X3.



This is a Sum Product object. The two inputs into this object are:
The Ingredients list, scaled to make one ton of each product.
The quantity in tons to make for each product. This second value comes from the 

Solution Search, as this object has not been placed on the sheet yet, you may wish to place 
an Input Table size 1 column by 3 rows to test this section separately.

This Sum Product object multiples along the rows and sums the columns to obtain the 
amount of each of Nitrates, Phosphates, Potash and Filler we have used.

In this example, we have made 1 ton of each of X1, X2 and X3 and used 0.4 tons each of 
Nitrates, Phosphates and Potash and 1.8 tons of Filler.






